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1. INTRODUCTION 

As a fundamental thermodynamic property, entropy plays a 
prominent part in the second-law analysis of engineering 
devices and serves as a valuable tool in physics and science. 
From microscopic perspective, entropy can be viewed as : (1) 
a measure of molecular disorder or molecular randomness 
[l-3], and (2) an inverse measure of information [3, 41. The 
former comes from statistical thermodynamics and the latter 
stems from information theory. However, it is difficult to 
give a macroscopic: physical description of entropy from its 
classical (macroscopic) definition. In fact, the question ‘What 
is entropy? is frequently raised with the implication that no 
one really knows [I , 51. 

The entropy S was defined as a differential [ 1, 51: 

That is to say, the infinitesimal decrease of the entropy of 
a body in any int’ernally reversible process is equal to its 
infmitesimal output of heat SQ divided by its absolute tem- 
perature T. This classical definition was first introduced by 
Clausius in 1865 [ 11 and comes from the Clausius inequality, 
a corollary or a consequence of the second law of ther- 
modynamics [l, 51 While the notation of entropy has been 
broadened by the advent of statistical mechanics and has 
been still further broadened by the later advent of infor- 
mation theory [3,4], the classical definition offers no physical 
interpretation. Indeed, our understanding and appreciation 
of entropy only rely on studying its uses in commonly en- 
countered processes and systems [ 1, 51. 

The present work addresses the macroscopic definition 
and physical meaning of entropy. Application of both first 
and second laws of thermodynamics to thermodynamic pro- 
cesses reveals that the heat to the environment during totally 
reversible processe:s between two specified end states rep- 
resents the change of a property. This leads to a new defi- 
nition of entropy with a clear physical meaning and some 
practical implications. The classically defined entropy is reco- 
vered when the constant in the new definition is specified as 
the inverse of environment temperature TO. 

2. HEAT TO THE ENVIRONMENT 

Consider a mass system A undergoing a process from state 
1 to state 2 in Fig. l(a). The work directly delivered by the 
system is termed the internal work Wf’. The work produced 
by auxiliary cyclic devices is called external work Wi’ 
(= Z:=, @,‘). Such auxiliary cyclic devices are required to 
ensure external reversibility [l] in any heat exchanges 
between the system and its environment for a general process 
1-2. The sum of Wf’ and WJz is termed total work W:‘. 

Note that the process in the auxiliary devices is cyclic. The 
change in the total energy of the combined system A+, com- 
prising A and the auxiliary cyclic devices, is thus equal to 
that for the system A alone. The @‘i’ and QA’ (=Zr=, QAz) 
are the work and heat interactions between the system A+ 
and its surroundings, respectively. 

A process is called internally reversible if no irreversibilities 
occur within the boundaries of the system during the process. 
A process is termed externally reversible if no irreversibilities 
occur outside the system boundaries during the process. A 
process is called totally reversible if it involves no irre- 
versibilities within the system or its surroundings. For the 
process l-2 undergone by the system A in Fig. l(a), the total 
reversibility requires no irreversibilities in both the system A 
and the auxiliary cyclic devices. A striking feature of Qi’ can 
be revealed by applying both first and second laws of ther- 
modynamics to the system A+, and is summarized as the 
following theorem. 

Theorem : For a system exchanging heat with a single thermal 
reservoir (the environment at temperature T, in particular), 
the heat exchanged is the same for all totally reversible pro- 
cesses between the same specified end states 1 and 2, which is 
termed the minimum heat symbolized with Q:i. During any 
irreversible process between these same specified end states, 
the heat exchanged QAf is always larger than QA:. 

Proof: To prove this theorem, consider two processes R 
and Z between 1 and 2, as shown in Fig. l(b). One process 
(R) is totally reversible, and the other (Z) is irreversible. The 
amount of total work produced during the totally reversible 
process R is_ IV:;, and the amount produced during the irre- 
versible one is WiF. The heat exchanged with the environ- 
ment during the totally reversible process R is Q& and the 
heat to the environment during the irreversible one Z is QA:. 

In violation of the theorem, we assume that QA: < Q& 
and thus lV:,2 > lVj2 by the first law of thermodynamics. 
Now let the reversible process be reversed as a process R 
from 2 to 1. This process will receive a work input lV;i from 
the surroundings and a heat input QAi from the environment. 

Now considering the R’ and Z together as a cycle [Fig. 
l(c)], we have an engine that produces a net work in the 
amount of lV:,2- Wji while exchanging heat with a single 
reservoir in the amount of QAi-QA:, a violation of the 
Kelvin-Planck statement of the second law of thermo- 
dynamics. Therefore we conclude that 

Q A: 3 Q;:. (1) 

However, if the equality holds in equation (l), the process I 
must be reversible as the process R’ could then also act as 
the erasing process of I. This is certainly against the initial 
assumption. Consequently, we have 

Q:: > Q::. (2) 
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positive constant 
total energy, infinitesimal energy decrease 
heat, positive for the heat transfer from a 
system 
heat to environment during process l-2 
heat to environment during irreversible 
process l-2 
minimum heat to environment during 
process l-2 
entropy, infinitesimal entropy decrease 

thermodynamic temperature 
environment temperature 
work, positive for the work done by the 
system 
external work during process l-2 
internal work during process 1-2 
total work during process l-2 
total work during irreversible process 
l-2 
total work during reversible process l-2. 
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Fig. 1. Totally reversible process and proof of theorem 
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Since both processes R and I are arbitrarily chosen as the 
totally reversible and irreversible, respectively, this is the 
proof that heat exchanged during an irreversible process is 
always larger than that during a totally reversible process. 

Now we replace Z and R by two arbitrarily chosen totally 
reversible processes R, and R2, respectively. Equation (1) 
leads to 

Q ;: 2 (2::. 

Similarly, if Z and R are replaced by R, and R,, respectively, 
equation (1) yields 

Q A: 3 Q:: 

As both expressions are true, to satisfy them simultaneously, 
we must have 

Q:: = Q::. 
However, R, and R, are any two totally reversible processes 
between the specified end states 1 and 2, so that we conclude 

This and equation (2) together establish the above-stated 
theorem. Furthermore, the first law of thermodynamics leads 
to 

Q;‘R = (E, - E2) - W:,2 (4) 

where E is the total energy of the system A. 
It should be noted that the theorem is not valid for the 

internal work output as, with variable temperature of the 

system A, we cannot find a single thermal reservoir to ensure 
the reversible heat transfer. 

3. ENTROPY AND ITS PHYSICAL MEANING 

While heat is generally dependent on the characteristics of 
process, QAi is uniquely-valued for all totally reversible pro- 
cesses between two specified end states 1 and 2. Therefore, it 
must represent the change of a state property which will be 
shown to be entropy, a term first named by Clausius in 1865 
[ 11. Then we may define entropy S, at arbitrary state 1, as 

S, = CQ;; (5) 

where state 0 is the reference state whose energy and entropy 
are assigned zero values, and C is a positive constant which 
will be determined later to recover the classical definition. 
The entropy decrease can thus be written as 

and 

dS = CdQ,, = C(dE-d W,), (6) 

S, -S2 = CQ;;. (7) 

The introduction of C is to recover the classical definition. 
However, it is more convenient and desirable for illustrating 
the physical meaning of entropy and performing entropy 
analysis to make C as 1. The entropy S at any state is, thus, 
an unavailable portion of the system energy E at that state 
which cannot be converted into work. An increase of the 
system entropy will decrease the availability of the system 
energy. This is the macroscopic physical meaning of entropy. 
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4. ENTROPY CHANGE OF SUBSTANCE 
SYSTEMS AND DETERMINATION OF C 

After the constant C is specified, we may use the definition 
of equation (5) to obtain the value of entropy at any state 1. 
This consists of applying the first and the second laws of 
thermodynamics to obtain heat exchanged with the environ- 
ment during a totally reversible process bringing the system 
from the specified state 1 to the reference state 0. As dem- 
onstrated below, only entropy changes are calculated here as 
they are more important than the absolute values and are 
usually required in applications [1, 51. 

4.1. Entropy change of a thermal reservoir 
As a hypothetical system, a thermal reservoir is defined as 

a body to which or from which heat can be transferred 
indefinitely without change in its temperature. The process 
within the thermal reservoir is reversible. Application of the 
first law of thermodynamics to a process undergone by the 
thermal reservoir shows that the energy decrease dE is equal 
to the heat SQ from the reservoir at temperature T during 
the process. With referring to Fig. 2(a), 

Thus, equation (6) gives the entropy decrease dS 

dS = CdQ,, = C(<dE-dB’,), 

= +Q-(1-+)aQ] = C$SQ. 

If let C = l/T,, the entropy decrease of the thermal reservoir 
becomes 

dS=g 
T 

which is identical t’o the classical definition of entropy. 

4.2. Entropy change of a work reservoir 
For a work reservoir, another hypothetical system in which 

the process is reversible, the energy decrease dE is equal to 
the work d IV,, from the work reservoir during the process. 
Also, d W,, = d W,,: for this case. Thus, equation (6) yields 

clS = C(dE-dW,), = 0 

which is also identical to that from the classical definition. 

Thermal Reservoir 

Tl I dQoR 

Environment To 

4.3. Entropy change of a general system 
For a reversible, infinitesimal process by a general ther- 

modynamic system A in Fig. 2(b), 

dE = SQ+SW, 

Equation (6) thus, leads to 

dS = CdQon = qdE-dB’& = C+Q 

which is again identical to that from the classical definition 
if C is specified as l/T,. 

It is interesting to note that the new definition not only 
offers a clear physical meaning of entropy, but also simplifies 
the derivation of the Clausius inequality, the principle of 
the increase of entropy, and the relation between entropy 
creation and loss of available energy. With C as 1, the entropy 
defined in the present work is the unavailable portion of the 
system energy E. An entropy analysis can thus uncover the 
change of energy structure for various thermodynamic pro- 
cesses, a task which cannot be done by the classical entropy 
analysis as pointed out in 161. 

5. CONCLUDING REMARKS 

The first and second laws of thermodynamics are employed 
to show that the heat exchanged between the environment 
and a system undergoing a totally reversible process rep- 
resents the change of a state property. This leads to a defi- 
nition of entropy which uncovers the nature of entropy as 
the unavailable portion of the system energy. The calculation 
of entropy change of substance systems concludes that the 
new definition is identical to the classical one by choosing 
the constant C as the inverse of the environment temperature. 
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